Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 6 de 6
Фильтр
1.
Comput Biol Med ; 150: 106129, 2022 Sep 22.
Статья в английский | MEDLINE | ID: covidwho-2041637

Реферат

BACKGROUND: The genome of SARS-CoV-2, is mutating rapidly and continuously challenging the management and preventive measures adopted and recommended by healthcare agencies. The spike protein is the main antigenic site that binds to the host receptor hACE-2 and is recognised by antibodies. Hence, the mutations in this site were analysed to assess their role in differential infectivity of lineages having these mutations, rendering the characterisation of these lineages as variants of concern (VOC) and variants of interest (VOI). METHODS: In this work, we examined the genome sequence of SARS-CoV-2 VOCs and their phylogenetic relationships with the other PANGOLIN lineages. The mutational landscape of WHO characterized variants was determined and mutational diversity was compared amongst the different severity groups. We then computationally studied the structural impact of the mutations in receptor binding domain of the VOCs. The binding affinity was quantitatively determined by molecular dynamics simulations and free energy calculations. RESULTS: The mutational frequency, as well as phylogenetic distance, was maximum in the case of omicron followed by the delta variant. The maximum binding affinity was for delta variant followed by the Omicron variant. The increased binding affinity of delta strain followed by omicron as compared to other variants and wild type advocates high transmissibility and quick spread of these two variants and high severity of delta variant. CONCLUSION: This study delivers a foundation for discovering the improved binding knacks and structural features of SARS-CoV-2 variants to plan novel therapeutics and vaccine candidates against the virus.

2.
J Biomol Struct Dyn ; : 1-17, 2022 Aug 18.
Статья в английский | MEDLINE | ID: covidwho-1991833

Реферат

SARS-CoV-2, the causing agent of coronavirus disease (COVID-19), first broke out in Wuhan and rapidly spread worldwide, resulting in a global health emergency. The lack of specific drugs against the coronavirus has made its spread challenging to control. The main protease (Mpro) is a key enzyme of SARS-CoV-2 used as a key target in drug discovery against the coronavirus. Medicines derived from plant phytoconstituents have been widely exploited to treat various diseases. The present study has evaluated the potential of Illicium verum (star anise) phytoconstituents against Mpro by implementing a computational approach. We performed molecular docking and molecular dynamics simulation study with a set of 60 compounds to identify their potential to inhibit the main protease (Mpro) of SARS-CoV-2. DFT study and post dynamics free energy calculations were also performed to strengthen the findings. The identified four compounds by docking study exhibited the highest potential compared to other selected phytoconstituents. Further, density functional theory (DFT) calculation, molecular dynamics simulation and post dynamics MM-GBSA energy calculation predicted Verimol-G as a potential compound, which formed stable interactions through the catalytic dyad residues. The HOMO orbital energy (-0.250038) from DFT and the post dynamics binding free energy calculation (-73.33 Kcal/mol) correlate, suggesting Verimol-G is the best inhibitor compared to the other phytoconstituents. This compound also complies with the ADME properties of drug likeliness. Thus, based on a computational study, we suggest that Verimol G may be developed as a potential inhibitor against the main protease to combat COVID-19.Communicated by Ramaswamy H. Sarma.

3.
Microb Pathog ; 164: 105404, 2022 Mar.
Статья в английский | MEDLINE | ID: covidwho-1637810

Реферат

COVID-19 pandemic 2nd wave catastrophic effect in the state of Chhattisgarh, India, from where no exclusive genomic data yet published, has prompted us to undertake this study to unearth the causative variant. Whole-genome sequencing of SARS-CoV-2 isolated from COVID-19 infected nine vaccinated healthcare workers (HCW), thirty mild/moderate, seventeen severe, and twenty-seven deceased patients, was performed. The significant predominance of the SARS-CoV-2 variant of concern (VOC), Delta (lineage B.1.617.2) identified in sixty-four (77.1%) cases in contrast to B.1 and its sublineage in eleven (13.2%), variant under monitoring (VUM), Kappa (lineage B.1.617.1) in five (6.0%) and another VOC Alpha (lineage B.1.1.7) in three (3.6%) cases respectively (p < 0.05, χ2 = 162.49). 88.8% vaccine breakthrough, 60% mild/moderate, 94.4% severe and 81.5% dead patients were infected by Delta. Kappa presents exclusively in mild/moderate, Alpha in vaccine breakthrough, mild/moderate, and dead patient and B.1 and its sublineages in mild, severe, and dead patient categories. Delta variant spike mutation of T19R, G142D, E156G, L452R, and deletion (F157 and R158) helps in escaping antibody response, T478K and D614G enhance viral affinity with ACE2 receptor while P681R and D950N result in higher replication and transmissibility by cleaving S1/S2 at furin site. We conclude that Delta variant predominant role along with co-occurrence of Kappa, Alpha, and B.1 variant during COVID-19 2nd wave pandemic in Chhattisgarh may pose a potential threat of future outbreak through hybrid variant evolution. Thus, intensive genomic surveillance for monitoring variant evolution and a more efficacious vaccine against the Delta and Alpha variants are required.


Тема - темы
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genomics , Humans , Mutation , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
J Biomol Struct Dyn ; 39(15): 5668-5681, 2021 Sep.
Статья в английский | MEDLINE | ID: covidwho-1390288

Реферат

SARS-CoV-2 is the causative agent of COVID-19 and has been declared as pandemic disease by World Health Organization. Lack of targeted therapeutics and vaccines for COVID-2019 have triggered the scientific community to develop new vaccines or drugs against this novel virus. Many synthetic compounds and antimalarial drugs are undergoing clinical trials. The traditional medical practitioners widely use Indian medicinal plant Withania somnifera (Ashwagandha) natural constituents, called withanolides for curing various diseases. The main protease (Mpro) of SARS-CoV-2 plays a vital role in disease propagation by processing the polyproteins which are required for its replication. Hence, it denotes a significant target for drug discovery. In the present study, we evaluate the potential of 40 natural chemical constituents of Ashwagandha to explore a possible inhibitor against main protease of SARS-CoV-2 by adopting the computational approach. The docking study revealed that four constituents of Ashwagandha; Withanoside II (-11.30 Kcal/mol), Withanoside IV (-11.02 Kcal/mol), Withanoside V (-8.96 Kcal/mol) and Sitoindoside IX (-8.37 Kcal/mol) exhibited the highest docking energy among the selected natural constituents. Further, MD simulation study of 100 ns predicts Withanoside V possess strong binding affinity and hydrogen-bonding interactions with the protein active site and indicates its stability in the active site. The binding free energy score also correlates with the highest score of -87.01 ± 5.01 Kcal/mol as compared to other selected compounds. In conclusion, our study suggests that Withanoside V in Ashwagandha may be serve as a potential inhibitor against Mpro of SARS-CoV-2 to combat COVID-19 and may have an antiviral effect on nCoV.Communicated by Ramaswamy H. Sarma.


Тема - темы
COVID-19 , Withania , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Plant Extracts , Protease Inhibitors/pharmacology , SARS-CoV-2
5.
Mol Biol Res Commun ; 10(3): 131-140, 2021 Sep.
Статья в английский | MEDLINE | ID: covidwho-1332492

Реферат

The severe acute respiratory syndrome is a viral respiratory disease recognised as COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Formerly, no precise remedies are available, and many studies regarding COVID-19 prevention and treatment are under development. Several targets for the design of drugs are identified, and studies are in headway to explore the potential target. RNA-dependent RNA polymerase (RdRp) protein identified as a promising target against SARS-CoV-2 infection for the drug design due to its significant role in viral replication. The present study focuses on identifying the binding effect of previously known RdRp inhibitors with RdRp of SARS-CoV-2 using molecular docking and molecular dynamics simulation approaches. Molecular docking and binding free energy calculations against RdRp enzyme identified suramin as a potential compound that showed the highest docking score of -7.83 Kcal/mole and binding energy of -80.83 Kcal/mole as a comparison to other compounds. Further, molecular dynamics simulation studies were moreover showed the stable binding behaviour of suramin docked complex in the protein active site. Thus, the study concludes that suramin might be helpful as a potential inhibitor against RNA-dependent RNA polymerase of SRAS-CoV-2. However, further investigation is needed to assess the possible effect of inhibitors on RdRp through in vitro and in vivo experiments.

6.
Plant Foods Hum Nutr ; 75(4): 458-466, 2020 Dec.
Статья в английский | MEDLINE | ID: covidwho-842349

Реферат

The severe acute respiratory syndrome is a viral respiratory infection and commonly called as COVID-19, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). It widely transmitted through direct or indirect contact. Currently, no specific treatment against SARS-CoV-2 are available; only prevention and supportive strategy are the preventive measures. The present review emphasizes the latest research related to COVID-19 and SARS-CoV-2 virus as well as the current status of potential inhibitors identified. Recent interest in SARS-CoV-2 has focused on transmission, symptoms, structure, and its structural proteins that exhibit promising therapeutics targets for rapid identification of potential inhibitors. The quick identification of potential inhibitors and immune-boosting functional food ingredients are crucial to combat this pandemic disease. We also tried to give an overview of the functional food components as a nutritional supplement, which helps in boosting our immune system and could be useful in preventing the COVID-19 and/or to improve the outcome during therapy.


Тема - темы
Betacoronavirus , Coronavirus Infections , Functional Food , Pandemics , Pneumonia, Viral , COVID-19 , Humans , SARS-CoV-2
Критерии поиска